首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30469篇
  免费   2672篇
  国内免费   23篇
  2023年   107篇
  2022年   73篇
  2021年   563篇
  2020年   281篇
  2019年   409篇
  2018年   474篇
  2017年   416篇
  2016年   776篇
  2015年   1310篇
  2014年   1472篇
  2013年   1817篇
  2012年   2280篇
  2011年   2273篇
  2010年   1532篇
  2009年   1250篇
  2008年   1874篇
  2007年   1908篇
  2006年   1735篇
  2005年   1744篇
  2004年   1663篇
  2003年   1555篇
  2002年   1528篇
  2001年   319篇
  2000年   213篇
  1999年   342篇
  1998年   431篇
  1997年   268篇
  1996年   242篇
  1995年   259篇
  1994年   243篇
  1993年   246篇
  1992年   207篇
  1991年   192篇
  1990年   196篇
  1989年   178篇
  1988年   141篇
  1987年   148篇
  1986年   129篇
  1985年   150篇
  1984年   148篇
  1983年   157篇
  1982年   149篇
  1981年   163篇
  1980年   136篇
  1979年   101篇
  1978年   126篇
  1977年   99篇
  1976年   92篇
  1975年   85篇
  1974年   73篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
2.
All plant cells are provided with the necessary rigidity to withstand the turgor by an exterior cell wall. This wall is composed of long crystalline cellulose microfibrils embedded in a matrix of other polysaccharides. The cellulose microfibrils are deposited by mobile membrane bound protein complexes in remarkably ordered lamellar textures. The mechanism by which these ordered textures arise, however, is still under debate. The geometrical model for cell wall deposition proposed by Emons and Mulder (Proc. Natl. Acad. Sci. 95, 7215–7219, 1998) provides a detailed approach to the case of cell wall deposition in non-growing cells, where there is no evidence for the direct influence of other cellular components such as microtubules. The model successfully reproduces even the so-called helicoidal wall; the most intricate texture observed. However, a number of simplifying assumptions were made in the original calculations. The present work addresses the issue of the robustness of the model to relaxation of these assumptions, by considering whether the helicoidal solutions survive when three aspects of the model are varied. These are: (i) the shape of the insertion domain, (ii) the distribution of lifetimes of individual CSCs, and (iii) fluctuations and overcrowding. Although details of the solutions do change, we find that in all cases the overall character of the helicoidal solutions is preserved.  相似文献   
3.
4.
5.
Three repetitive sequence families from the sea urchin genome were studied, each defined by homology with a specific cloned probe one to a few hundred nucleotides long. Recombinant λ-sea urchin DNA libraries were screened with these probes, and individual recombinants were selected that include genomic members of these families. Restriction mapping, gel blot, and kinetic analyses were carried out to determine the organization of each repeat family. Sequence elements belonging to the first of the three repeat families were found to be embedded in longer repeat sequences. These repeat sequences frequently occur in small clusters. Members of the second repeat family are also found in a long repetitive sequence environment, but these repeats usually occur singly in any given region of the DNA. The sequences of the third repeat are only 200 to 300 nucleotides long, and are generally terminated by single copy DNA, though a few examples were found associated with other repeats. These three repeat sequence families constitute sets of homologous sequence elements that relate distant regions of the DNA.  相似文献   
6.
RNAi is a powerful technology for analyzing gene function in human cells. However, its utility can be compromised by inadequate knockdown of the target mRNA or by interpretation of effects without rigorous controls. We review lentiviral vector-based methods that enable transient or stable knockdowns to trace mRNA levels in human CD4+ T cell lines and other targets. Critical controls are reviewed, including rescue of the pre-knockdown phenotype by re-expression of the targeted gene. The time from thinking about a potential knockdown target to analysis of phenotypes can be as short as a few weeks.  相似文献   
7.
8.
9.
10.
Cyrtandra (Gesneriaceae) is a genus of flowering plants with over 800 species distributed throughout Southeast Asia and the Pacific Islands. On the Hawaiian Islands, 60 named species and over 89 putative hybrids exist, most of which are identified on the basis of morphology. Despite many previous studies on the Hawaiian Cyrtandra lineage, questions regarding the reconciliation of morphology and genetics remain, many of which can be attributed to the relatively young age and evidence of hybridization between species. We utilized targeted enrichment, high‐throughput sequencing, and modern phylogenomics tools to test 31 Hawaiian Cyrtandra samples (22 species, two putative hybrids, four species with two samples each, one species with four samples) and two outgroups for species relationships and hybridization in the presence of incomplete lineage sorting (ILS). Both concatenated and species‐tree methods were used to reconstruct species relationships, and network analyses were conducted to test for hybridization. We expected to see high levels of ILS and putative hybrids intermediate to their parent species. Phylogenies reconstructed from the concatenated and species‐tree methods were highly incongruent, most likely due to high levels of incomplete lineage sorting. Network analyses inferred gene flow within this lineage, but not always between taxa that we expected. Multiple hybridizations were inferred, but many were on deeper branches of the island lineages suggesting a long history of hybridization. We demonstrated the utility of high‐throughput sequencing and a phylogenomic approach using 569 loci to understanding species relationships and gene flow in the presence of ILS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号